Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones.
نویسندگان
چکیده
To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15 and 20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15 and 20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones.
منابع مشابه
Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size ...
متن کاملMatrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch.
We have investigated the role of proteinases in the developmental program of bone, cartilage, tongue muscle and epithelial differentiation and remodeling in the mandibular arch during murine embryogenesis. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was tissue-specific with little or no expression in the epithelium of tooth buds, tongue or oral cavity. Gel...
متن کاملEGF abrogation-induced fusilli-form dysmorphogenesis of Meckel's cartilage during embryonic mouse mandibular morphogenesis in vitro.
Mutations associated with genes of the EGF superfamily are implicated in facial malformations arising from abnormal development of the first branchial arch. EGF and EGF receptor (EGFr) transcripts are expressed in the mouse embryonic first branchial arch and derivatives from E9 through E15. EGF transcripts are localized to ectomesenchymal cells associated with precartilage, cartilage, bone and ...
متن کاملDevelopment of Meckel's cartilage in the symphyseal region in man.
BACKGROUND The aim of this work is to clarify the aspects which are at present most controversial about the development of the anterior segments of Meckel's cartilage, such as the role of and determination of the area that is incorporated in the development of the human mandible. METHODS Light microscope studies were done on 25 embryos and human fetuses from the collection of the Institute of...
متن کاملNeural crest cell-derived VEGF promotes embryonic jaw extension.
Jaw morphogenesis depends on the growth of Meckel's cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel's cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 316 2 شماره
صفحات -
تاریخ انتشار 2008